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Helicase proteins move along double-stranded nucleic-acid molecules and unwind the double helix. This
paper presents a theoretical study of the coupling between helicase translocation and duplex unwinding. Two
different cases—active and passive opening—are usually distinguished. In active opening, the helicase directly
destabilizes the double-stranded nucleic acidsdsNAd to promote opening. Passive opening implies that the
helicase binds ssNA available when a thermal fluctuation partially opens the dsNA. We formulate a discrete
model for helicase motion. An interaction potential describes how the helicase affects duplex unwinding when
near a junction between single-stranded and double-stranded NA. Different choices of the potential correspond
to the cases of active and passive opening. An optimal choice of interaction potential leads to a helicase which
canunwindNA as rapidly as ittranslocateson single strands.
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I. INTRODUCTION

Helicases are motor proteins which open double-stranded
nucleic-acidsNAd molecules. The strand separation is fueled
by nucleotide triphosphatesNTPd hydrolysis, typically of
ATP. Helicases play a role in nearly every cellular process
which involves NA, including DNA replication, transcrip-
tion, translation, repair, and RNA processingf1g. All heli-
cases move along NA strands and couple motion to strand
separation. For this reason, helicases are also NA translo-
casesf2,3g.

In this work we discuss unwinding by helicases which
translocate directionally on single-strandedsssd NA. Such a
description is particularly relevant to the superfamily I and II
sSF1 and SF2d helicases, many of which translocate on ssNA
f3g. Upon reaching the ss–double-strandsdsd junction, the
helicase moves the junction forward, creating additional
ssNA “track” sFig. 1d. We consider how a helicase may effi-
ciently couple ss translocation to unwinding. In the experi-
mental literature on helicases, this coupling is classified as
passive or activef1–3g. A passive helicase waits for a ther-
mal fluctuation that opens part of the dsNA, and then moves
forward and binds to the newly available ssNA. An active
helicase directly destabilizes the dsNA, presumably by
changing the free energy of the ds state. In this paper, we
describe the principles of this process and show how an op-
timal choice of interaction maximizes the unwinding rate.

Experiments on the SF1 protein PcrA have been proposed
to demonstrate that this helicase unwinds actively. In a crys-
tallographic study, Velankaret al. observed that certain por-
tions of PcrA protein appeared to interact with and distort
duplex DNA in cocrystals of PcrA and DNAf4g. When these
specific portions of the protein were altered, the mutant pro-
teins unwound dsDNA 10–30 times more slowly than the
wild-type protein sdepending on which residue was mu-
tatedd. However, the mutant ATPase activity on single
strands was unchanged, suggesting the mutant helicases
maintained wild-type ssNA translocation activityf5g.

Helicases are an important class of enzymes which inter-
act with NA, yet have many relatively simple features. For
example, many helicases unwind NA at rates which are
independent of the NA sequence, within experimental reso-
lution f1,6–9g. Thus, the information content of the NA is
apparently not essential to helicase operation—a large sim-
plification compared to RNA polymerases, for example
f10,11g.

Although extensive biochemical and structural studies of
helicases have been performed, few mathematical models of
helicases have been studied. Work includes a “flashing-field”
model specific to hexameric ring helicasesf12g, a description
of a helicase as a biased random walk, which considered how
the density of histones affects the random walkf13g, and a
phase-coexistence model of ss and dsDNA in the presence of
a helicasef14g. Recently, a physical description of helicase
unwinding of NA has been proposed which contains both
active and passive opening as different cases in a general
frameworkf15g. Here we extend this study, fully describe the
solutions, and discuss the consequences for NA unwinding.

An important property of NA is the thermally activated
opening and closing of double strands. Although thermal
fluctuations open the dsNA, under typical conditions it is
thermodynamically stable and on average closes. For un-
winding to occur, the helicase and the NA ss-ds junction

FIG. 1. Sketch of helicase on NA. The helicase moves forward
stoward the dsNAd at ratek+ and backward at ratek−. The NA opens
at ratea and closes at rateb.
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must interact. An interaction potential describes how the
presence of the helicase modifies NA opening. Passive open-
ing corresponds to a hard-wall potential: the helicase inhibits
NA closing, but does not otherwise affect the dsNA. A softer
potential corresponds to active opening. We calculate exactly
the unwinding rate for different interaction potentials. Pas-
sive unwinding is slower than one simple type of active
opening. The interaction potential can be chosen to maxi-
mize the unwinding rate, and we show that an optimized
active helicase can unwind dsNA as fast as it translocates on
ssNA.

II. DISCRETE MODEL FOR NA UNWINDING

A. NA opening

Before discussing helicase-driven unwinding of NA, we
describe the properties of NA and helicase when the helicase
is far from the single-strand–double-strandsss-dsd fork on
the ssNA. The dsNA opens and closes due to thermal fluc-
tuations. We describe thermal breathing by the ratesa andb
at which the NA base pair at the ss-ds junction opens and
closes, respectively. For simplicity, we assume that these
rates are independent of the NA base sequence. Because the
NA tends to close, we haveb.a sin the absence of melting
agentsf2gd. Here, we consider fluctuations for which the NA
opens or closes at the ss-ds fork only. We thus ignore fluc-
tuations where the dsNA opens spontaneously and forms a
bubble surrounded by dsNA. Modes where few or many
bases open within the dsNA exist, but when the NA is well
below the melting temperature they are rare and can be ne-
glected.

Since the NA breathing results from thermal fluctuations,
the ratesa andb satisfy detailed balance:

a

b
= e−DG, s1d

whereDG is the free energy of one base-pair bond. Through-
out this paper, we write energies in units ofkBT sT is tem-
perature andkB the Boltzmann constantd. We ignore se-
quence effects on the fluctuations of NA opening, average
over sequence inhomogeneities, and estimateDG<2 for a
base pair near a junctionf16g. This value is consistent with
bulk melting-curve resultsf1g. Thus we estimatea /b<e−2

<1/7. To date,a andb have not been directly measured. In
Appendix A we estimatea<107 s−1 from experiments
which measure the opening rate of short DNA hairpins.

B. Helicase translocation on single strands

If the helicase is far from the ss-ds junction on the single
strand, it advances on the ssNA in a given directionsFig. 1d.
We denote the rate of motion toward the ss-ds junction byk+,
and the backward rate byk−. We assume here that the heli-
case moves in single-base steps.sNote that a helicase might
take steps of several bases on ssNA. In this case we can
adapt the step size in our description.d The helicase trans-
duces the chemical energy of ATP hydrolysis to generate
directed motion withk+@k−. Directed motion is possible be-
cause the single strand is asymmetric with two different

ends, the 38 and 58 ends. In some cases we neglect backward
steps and assumek−<0 even though in generalk−.0.

Helicase motion is a nonequilibrium process because it is
driven by ATP hydrolysis. The ratesk+ andk− do not corre-
spond to thermal transitions and therefore do not satisfy de-
tailed balance. These rates are instead determined by the
mechanochemical coupling of ATP hydrolysis to motion. In
Appendix B we discuss a simple model for motion genera-
tion driven by ATP hydrolysis. This model determines the
ratesk+ andk− which result ultimately from conformational
changes of the protein; we give explicit expressions fork+

andk− in different regimes.

C. Interaction potential

Helicase-catalyzed unwinding of NA requires an interac-
tion between the helicase and the ss-ds junction. Suppose the
helicase is bound at basen along the NA strand and the NA
ss-ds junction is at basem sFig. 1d. Since the helicase moves
forward sincreasingnd and the NA tends to closesdecreasing
md, the motion of the helicase and junction tend to drive their
positions closer together. When the helicase and the NA ss-ds
junction are close to each other, they interact. We describe
the interaction by a potentialUsm−nd which depends only
on the differencej =m−n. For large separationsj @1 the
junction and the helicase have no effect on each other, so the
coupling potential tends to zero. In this limit the helicase ss
translocation and the DNA fluctuations are decoupled. How-
ever, whenj is small the coupling potential changes both
helicase and junction motion:U.0 inhibits the forward mo-
tion of the helicase and increases the relative opening rate of
the junction.

Detailed balance determines how the coupling potential
changes the NA opening and closing rates. If the NA closes
sm→m−1d, the interaction energy changes fromUs jd to
Us j −1d. The ratio ofb j to a j−1 therefore satisfies

b j

a j−1
=

b

a
e−fUs j−1d−Us jdg, s2d

where a and b are the rates in the limitj →` where the
helicase and junction are well separated. Here the subscript
denotes the helicase-junction separation before the opening
or closing occurs.

The potential also influences helicase translocation. The
change in energyUs j −1d−Us jd characterizes the effective
force acting on the helicase. Since the helicase hydrolyzes
ATP and its motion is a nonequilibrium phenomenon, de-
tailed balance does not apply. In Appendix B we present a
simple two-state model for nonequilibrium helicase translo-
cation. While in general the forward and backward rates have
a complex dependence on external force, there are simple
limits which are convenient for our discussion. In particular,
the ratio of the rates satisfies an exponential, detailed-
balance-like relation in many situations where ATP hydroly-
sis is tightly coupled to motion. In this case, the ratio satisfies

M. D. BETTERTON AND F. JÜLICHER PHYSICAL REVIEW E71, 011904s2005d

011904-2



kj
+

kj−1
− .

k+

k−e−fUs j−1d−Us jdg. s3d

We use this simple relation to illustrate the principles of he-
licase motion which do not depend in detail on the force
dependence of the hopping rates.

Equationss2d and s3d determine only the ratios of the
rates. The energy barrier to single-base steps of the helicase
or junction determines how the individual rates change. The
effect of the energy barrier on the rates can be represented by
a coefficient 0, f ,1:

kj
+ = k+e−ffUs j−1d−Us jdg,

kj−1
− = k−e−sf−1dfUs j−1d−Us jdg,

b j = be−ffUs j−1d−Us jdg,

a j−1 = ae−sf−1dfUs j−1d−Us jdg. s4d

Smaller values off imply that the potential changes pre-
dominantly the backward rates, while for largef the interac-
tion primarily affects the forward rates. Note that we assume
for simplicity that the interaction energy only depends on the
separation between the helicase and junction. Therefore,
changing the separation either by NA breathing or by heli-
case motion changes the energy in the same way. In other
words, f is the same for the helicase motion and the NA
breathing since both phenomena involve the same barrier.
We emphasize thatf =0 and f =1 are physically unrealistic
and singular limits.

We do not knowa priori the shape of the coupling poten-
tial Us jd. In Sec. III below, we study different forms of
Usm−nd subject to the requirementssid U→0 for m@n
swhen the helicase and the junction are far apart, there is no
interactiond and sii d U→` for n@m. The second require-
ment implies that the helicase remains near the ssNA—for
example, because it cannot move solely on dsNA. This in-
crease inU is necessary to confine the helicase near the ss-ds
junction.

D. Solving for the opening rates

Given the ratesk+, k−, a, and b, the coupling potential
Usm−nd, and the parameterf, we can determine the mean
rate of dsNA unwinding and the diffusion coefficient for
fluctuations about the mean. Consider the probability
Psn,m,td that the helicase is at positionn and the ss-ds junc-
tion is at positionm at time t. The probability function is
non-negative withon,mPsn,m,td=1 for all t. The dynamics
of P are described by

dPsn,md
dt

= − sam−n + bm−n + km−n
+ + km−n

− dPsn,md

+ am−n−1Psn,m− 1d + bm−n+1Psn,m+ 1d

+ km−n+1
+ Psn − 1,md + km−n−1

− Psn + 1,md. s5d

This equation describes the changes toPsn,m,td due to
opening and closing of the NAswhich changemd and heli-

case stepsswhich changend. We rewrite using the difference
j =m−n and midpointl =m+n:

dPs j ,ld
dt

= − sa j + b j + kj
+ + kj

−dPs j ,ld + a j−1Ps j − 1,l − 1d

+ b j+1Ps j + 1,l + 1d + kj+1
+ Ps j + 1,l − 1d

+ kj−1
− Ps j − 1,l + 1d. s6d

Since the coefficients in Eq.s6d are independent ofl, we can
sum overl to obtain an equation for the difference-variable
distributionP j =olPs j , ld:

dP j

dt
= − sa j + b j + kj

+ + kj
−dP j + skj−1

− + a j−1dP j−1

+ skj+1
+ + b j+1dP j+1. s7d

This equation describes transitions that increasej at ratekj
−

+a j and transitions that decreasej at rate kj
++b j. The

difference-variable probability distributionP j relaxes to a
steady state in finite time while the motion in the midpoint
variablel undergoes drift with diffusion. Since the NA open-
ing and closing times are of the order of microseconds, we
expect thatP j rapidly relaxes to the stationary distribution
satisfying

Is jd = Is j − 1d, s8d

where the flux of probability betweenj and j +1 is

Is jd = sa j + kj
−dP j − sb j+1 + kj+1

+ dP j+1. s9d

The stationary distribution forj thus corresponds to constant
probability flux. BecauseUs jd→` as j →−`, this flux must
be zerosno probability can escape toj →−`d. Setting Eq.s9d
=0 gives a recursion relation forP j:

P j+1 =
a j + kj

−

b j+1 + kj+1
+ P j . s10d

The rateskj
+, kj

−, a j, andb j are determined by the coupling
potential, and thereforeP j depends onUs jd.

For times long compared to the relaxation time of the
difference variable, fluctuations inj and l become indepen-
dent. In this limit, we can writePs j , ld=P jPl, wherePl is
the probability distribution inl. We substitute this expression
in Eq. s6d and define

p = o
j

sa j + kj
+dP j , s11d

q = o
j

sb j + kj
−dP j . s12d

We find an equation forPl:

dPl

dt
= − s p + qdPl + pPl−1 + qPl+1. s13d

The dynamics in the midpoint variablel are a combination of
drift sif pÞqd and diffusion. As above, we define the current
in the variablel:
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Ysld = pPl − qPl+1. s14d

Thus the equation for the stationary distributionPl is

Ysld = Ysl − 1d. s15d

The ratesp and q are independent ofl, because the rates
depend only on the difference variablej . Therefore the dy-
namics inl are translationally invariant. The steady-state so-
lution is a constantsindependent ofld. We haveP0=1/N and
Y=sp−qdP0, whereN is the total number of NA bases. The
mean unwinding rate of a single helicase is therefore

v =
1

2
sp − qd =

1

2o
j

skj
+ + a j − kj

− − b jdP j . s16d

The factor of 1/2 appears because we usel =m+n, while the
true midpoint location isl /2. The expression forv has a
simple physical interpretation. The quantity in parentheses is
the net unwinding rate at separationj . A forward hop of the
helicaseskj

+d or NA openingsa jd moves the helicase-junction
complex forward. Similarly, a backward hop of the helicase
skj

−d or NA closing sb jd moves the complex backward. We
multiply the unwinding velocity at separationj by the prob-
ability P j of finding the complex at separationj . Repeating
this addition for all possiblej , we arrive at Eq.s16d. Thus
solving Eq.s10d for P j immediately gives the mean helicase
unwinding rate.

To find the effective diffusion coefficient which describes
the fluctuations about the mean unwinding rate, we consider
the decay rate of modes with wave numberl. For the ansatz
Pl =Pleille−t/t+ivt we have

1

t
− iv = sp + qd − pe−il − qeil. s17d

In the limit of long wavelengthssmall ld, this becomes

1

t
− iv = − 2iv + 4Dl2 + Osl4d, s18d

wherev is the velocity. The diffusion coefficient which char-
acterizes velocity fluctuations is thus

D =
1

4
sp + qd =

1

4o
j

skj
+ + a j + kj

− + b jdP j . s19d

III. PASSIVE VERSUS ACTIVE UNWINDING

In this section we study helicase unwinding for specific
coupling potential shapessFig. 2d. The hard-wall and stair-
case potentials give a simple representation of passive and
active opening, respectively. We also examine the case where
the interaction between helicase and junction hinders un-
winding. These results let us compare the basic properties of
passive and active opening.

A. Passive unwinding

The term “passive” is typically used for a helicase which
inhibits NA closingswhen near the ss-ds junctiond but does

not enzymatically accelerate NA openingf1–3g. In this pic-
ture, the helicase translocates on ssNA toward the ss-ds junc-
tion. Once the helicase reaches the junction, it can only ad-
vance if a fluctuation opens the adjacent NA base pair. The
helicase then translocates forward by one base and blocks
closing of the newly opened base pair. We can describe this
regime with an appropriate interaction potentialUsm−nd. We
will find that the base pair adjacent to the helicase has a
probability a /b of being open. Thus, when the helicase at-
tempts a forward hop it succeeds with probabilitya /b.

We suppose that the helicase-dependent inhibition of NA
closing requires the helicase to be adjacent to the junction:
when the junction is at positionm=n+1, the helicase covers
the ss base nearest the junction and prevents base pairing
with the complementary NA strand. Thus passive opening
requiresb1=0. By comparison to Eq.s2d, we see thatb1
=0 if Us0d is infinite. This is the hard-wall potential sketched
in Fig. 2sad. The potential affects the helicase motion accord-
ing to Eq. s3d: if Us0d is infinite, thenk1

+=0. Thus the heli-
case atn=m−1 is unable to advance into the dsNA until a
fluctuation opens the NA. The hard-wall coupling potential
thus prevents overlap of the helicase and the dsNA.

For a hard-wall potential,k+, k−, a, andb are constant in
the region j .0 except atj =1, wherek1

+=b1=0. Since the
rates are constant, we have

P j = ASa + k−

b + k+D j

= Acj , s20d

where we have definedc=sa+k−d / sb+k+d and the constant
A is determined from normalization:

A =
b + k− − a − k−

a + k+ . s21d

Evaluating Eq.s16d for the mean unwinding rate we find

vHW =
ak+ − bk−

b + k+ . s22d

The unwinding velocity is positive whenk+/k−.b /a. That
is, the free-energy change of closing one NA base must be
smaller than the effective free-energy change driving the he-
licase. This requirement implies that the energy supplied by
ATP hydrolysis must exceed the energy required to separate
the NA strands.

FIG. 2. Coupling potentials between the helicase and ss-ds junc-
tion. sad Hard-wall potential corresponding to passive opening.sbd
A potential with a step, which corresponds to active opening.scd
Three-step staircase potential.
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The maximumvHW occurs whenk−=0; fastest unwinding
occurs for a unidirectional helicase. This upper bound is

vHW
max=

a

b
S k+

1 + k+/b
D <

a

b
k+, s23d

where we have assumed thatk+!b. Thus a passive helicase
unwinds more slowly than it translocates on ssNA by a factor
<a /b. This result has a simple interpretation: the base pair
adjacent to the helicase has a probabilitya /b of being open.
Thus, when the helicase attempts a forward hop it succeeds
with probability a /b.

B. Active opening: The step potential

A coupling potentialUs jd with nonzero range corresponds
to active unwinding and leads to position-dependent rates
given by Eq. s4d. Whenever NA closing increases the
interaction energy, so thatUs j −1d.Us jd, the ratiob j /a j−1

,b /a. Thus a repulsive coupling potential between the NA
and helicase can increase the rate of opening, decrease the
rate of closing, or both.

Consider a coupling potential with a step of heightU0
=Us0d−Us1d at j =0 and a hard wall atj =−1 fFig. 2sbdg. The
dsNA and helicase can overlap by one base if the energetic
costU0 is paid. At the step we have

k0
−

k1
+ =

k−

k+eU0,

a0

b1
=

a

b
eU0,

k0
+ = b0 = 0. s24d

The individual rates are, as above,

k1
+ = k+e−fU0,

k0
− = k−e−sf−1dU0,

b1 = be−fU0,

a0 = ae−sf−1dU0. s25d

Using these expressions, the steady-state difference-variable
probability distribution is

P j = HAe−U0c−1, j = 0,

Acj−1, j . 0,
J s26d

wherec=sa+k−d / sb+k+d andA is a normalization constant.
The unwinding velocityv1 for a one-step potential, relative
to vHW of Eq. s22d, is

v1

vHW
=

c + s1 − cde−fU0

c + s1 − cde−U0
. s27d

The ratiov1/vHW depends strongly onf sFig. 3d. For small
values off the helicase forward ratek+ and the DNA closing
rateb do not change much due to the step, while the helicase

backward ratek− and the DNA opening ratea increase sig-
nificantly. Our result shows that to accelerate unwinding, it is
better to increasea than to decreaseb, because faster open-
ing increases the strand-separation time scale. In particular,
from Eq. s27d we see that in the limitf →0 andU0@1, v1
→vHW/c. Recall that the maximal unwinding rate for pas-
sive opening is approximately a factor ofc smaller than the
helicase ss translocation rate. Active unwinding with smallf
can increase the unwinding rate byc−1. In other words, such
a helicase can unwind dsNA as fast as it translocates on
single strands.

The step heightU0 significantly affects the unwinding
rate. For smallU0, v1 is comparable tovHW. As the step
height increases,v1 increases, because the step increases the
NA opening ratea0. For U0=1 and f =0.05, the unwinding
rate is approximately twice the hard-wall velocity. For larger
U0, the unwinding rate reaches a maximum and begins to
decrease. The decrease for largeU0 occurs when the helicase
backward ratek0

− is significantly increased by the step.

C. Active opening: The staircase potential

Known helicase proteins are large compared to the size of
one NA basef1g. Thus the coupling potential may extend the
helicase-junction interaction over multiple bases. Here we
consider a staircase potential withn identical steps, each of
heightU0 sFig. 2scdd. The potential has a wallsU→`d at j
=−n. The steady-state difference-variable probability distri-
bution is

P j = HAes j−1dU0cj−1, − n + 1 ø j ø 0,

Acj−1, j . 0,
J s28d

whereA is determined byo jP j =1. The unwinding velocity
is, for nù1,

vn

vHW
=

cn + s1 − cde−sf−1dU0o j=1

n
cn−je−jU0

cn + s1 − cdo j=1

n
cn−je−jU0

,

FIG. 3. Unwinding ratesrelative to the hard-wall rated for a
one-step potential as a function of step height. The different curves
correspond to different values of the parameterf. The maximum
opening speed increases for smallf ssee textd.
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=
cnse−U0 − cd + e−fU0s1 − cdse−nU0 − cd
cnse−U0 − cd + e−U0s1 − cdse−nU0 − cd

. s29d

Note that forn=1 this expression reduces to Eq.s27d. In the
special casen=0 the sums are absent. In this case, we re-
cover the hard-wall case withv0/vHW=1. In Fig. 4 we show
how the unwinding rate varies with the number of steps. As
n increases, the unwinding velocity grows more quickly for
smallU0. The maximum opening rate also increases. For one
step with U0=2, the unwinding velocity is three times the
hard-wall rate, whereas for five steps of height 2 the opening
velocity is 5 times the hard-wall velocitysf =0.05d. This is a
significant increase over the hard-wall velocity. At best, a
helicase with a staircase potential can unwind NA as fast as it
translocates on ssNA.

D. Maximizing the unwinding rate

If rapid unwinding is advantageous, helicases will evolve
toward coupling potentials which maximize the unwinding
rate. This question can be addressed systematically by first
looking at the limit of a large number of steps in the staircase
potentialsn→`d. In this case, the step sizeU0 corresponding
to the maximum opening velocity approachesUmax<− ln c.
Recalling thatc<a /b=e−DG, we see that, in the limit of a
large number of steps,

Umax< DG. s30d

Thus the optimal step height for rapid unwinding approaches
the free-energy change of melting one base of NA. This re-
sult reflects the trade-off inherent in the choice of a coupling
potential: an increase in the step heightU0 means that for
small j the NA opening rate increases and the helicase for-
ward rate decreases. In practice, the limiting valueUmax
<DG is a good approximation for as few as five steps in the
potentialsFig. 4d.

E. Negative staircase potential

In general, the step height of the potential could also be
negative, which corresponds to an attractive interaction be-
tween the helicase and junction. Then the potential hinders
unwinding because it accelerates closing of the NA. In this

case, the curves for potentials with a varying number of iden-
tical steps are similar. If we defineW=−U0.0, then for all
n, Eq. s29d is well approximated by

vn

vHW
< e−s1−fdW. s31d

Thus a negative staircase leads to an exponentially decreas-
ing unwinding rate below the hard-wall value. In Fig. 5 we
show the decrease in unwinding rate for this worse-than-
passive helicase. ForW=2, the unwinding rate is approxi-
mately 5 times slower than the passive helicasesf =0.05d.

IV. DISCUSSION

We have described the opening of NA by a helicase in
terms of two degrees of freedom: the position of the helicase,
which moves along ssNA driven by ATP hydrolysis, and the
position of the ss-ds NA junction, which undergoes thermal
fluctuations and closesson averaged if a helicase is not
present. This simple model allows us to focus on how the
motion is affected by the helicase-junction interaction. We
show that the interaction between helicase and dsNA deter-
mines the rate of unwinding; active opening in general leads
to a faster unwinding rate that can approach the rate of heli-
case motion along the ssNA.

This approach is similar to the polymerization ratchet of
Peskin, Odell, and Oster, who examined how a polymerizing
filament is able to produce a forcef17g. In their work, the
two fluctuating degrees of freedom are the tip of a filament
and a wall, which are analogous to our helicase and ss-ds
junction. They considered a hard-wall interaction; thus our
work is a generalization of their approach.

The hopping ratesk+ and k− are difficult to measure ex-
perimentally. Experiments on ss translocation provide a
value for the differencek+−k−. Such measurements, how-
ever, do not measure the individual rates. In single-molecule
experiments, the average single-strand translocation rate
could be directly observedsalthough to our knowledge, no
such experiments have yet been publishedd. Carefully de-
signed bulk experiments can also measure single-strand
translocation. Bulk data on ss translocation have been pub-
lished for two helicases: work by Dillingham, Wigley, and
Webb examined PcrA helicasef6,18g, while Kim, Narayan,

FIG. 4. Unwinding ratesrelative to the hard-wall rated as a func-
tion of step height, shown for staircase potentials with different
number of steps. The parameterf =0.05.

FIG. 5. Unwinding ratesrelative to the hard-wall rated as a func-
tion of step depth, shown for negative staircase potentials with dif-
ferent number of steps. Heref =0.05.
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and Patel studied T7 DNA helicasef19g. The data of Dilling-
hamet al. are particularly useful in our discussion, because
PcrA helicase is believed to take single-base steps on ssNA.
Assuming a single population of helicases, they foundk+

−k−=80 bases s−1. As discussed above,b /a<7 for DNA.
Thus, for unwinding to be possible, as shown in Eq.s22d, we
must havek+.7k−. This result is consistent with the experi-
ments of Dillinghamet al.: their data were well fit by a
model with no backward stepssk−=0d, although our analysis
of their results found a comparably good fit with values ofk−

up to 10% ofk+.
Using these experimental values, for PcrA the maximum

possible hard-wall unwinding velocityfEq. s23dg is

vHW =
a

b
S k+

1 + k+/b
D < 11 bp s−1. s32d

By contrast, if PcrA has optimized its coupling potential for
rapid opening, the unwinding velocity is approximately
equal to the ss translocation rate. The maximum unwinding
rate of PcrA is therefore 80 bp s−1 sunder the same experi-
mental conditions as the measurement of ss translocationd.

To our knowledge, a direct comparison between the rate
of ss translocation and ds unwinding has not been performed
for any helicase. Typical unwinding assays are indirect: they
use gel electrophoresis to determine the fraction of dsNA
molecules completely unwound at a given timef1,5g. A num-
ber of single-molecule experiments have directly measured
helicase unwinding ratesf7–9,20,21g. However, ss transloca-
tion for the same helicases has not been measured.sIn fact,
several of the single-molecule studies used the helicase
RecBCDf7–9g, which is believed not to translocate on ssNA
f1g.d We anticipate that future experiments on helicases will
measure both translocation and unwinding rates, enabling a
direct test of our model.

Although the unwinding rate has not been directly mea-
sured, a comparison of active versus passive opening for
PcrA has been suggested. Velanakaret al. crystallized PcrA
protein with a forkedspart ss and part dsd DNA substratef4g.
In the crystal structure, certain parts of PcrA appear to bind
the dsDNA and distort the double helix. In a follow-up study,
researchers from the same laboratory introduced mutations to
the PcrA residues which appear to interact with dsDNA in
the crystal structuref5g. The mutant proteins showed ATP
hydrolysis activity in the presence of ssDNA similar to the
wild-type protein, suggesting that the mutant helicases had
no defect in ssDNA translocation. However, the altered pro-
teins unwound dsDNA 10–30 times more slowly than the
wild-type protein sdepending on which residue was mu-
tatedd. These experiments suggest that PcrA unwinds actively
and that passive unwinding may be slower and less effective
than active. In the language of our model, the mutations may
alter the potential so it approaches a hard-wall or negative-
staircase formscorresponding to passive or worse-than-
passive openingd. The results of our model demonstrate strik-
ing quantitative agreement with the results on PcrA:
changing an optimized, active helicase to a passive form de-
creases the unwinding rate by a factor ofc−1<7. Further
altering the potential to a negative staircase with a well depth

of 2kBT decreases the unwinding rate by a factor of 35. De-
spite the simplicity of our model, we find that small changes
to the coupling potential cause the unwinding rate to vary by
a large factor.

We emphasize that changes to the helicase hopping rates
k+ and k−—for example, due to changes in the ATP
concentration—lead to changes in the unwinding rate which
our model describes quantitatively. Similarly, the free-energy
change of melting one NA base pair can be changed by al-
tering solution conditions or by applying a force to the NA
molecule. Such a change directly altersa /b in our model,
and consequently changes the unwinding rate.

Our simple picture neglects several effects. We ignore un-
binding of the helicase from the NA strand. Furthermore, we
ignore deformations of the NA strand, such as bending and
torsion, and treat the strand as a rigid structure. The helicase
is described by forward and backward rates only; we neglect
the details of the protein’s biochemical states. In addition, we
ignore the effects of the NA base sequence on opening; these
effects are believed to be weak for helicasesf1g. However,
recent work by Kafri, Lubensky, and Nelsonf22g shows that
a motor protein which translocates on a random track can
show interesting behavior near the stall force.

The simplified structure of this model means it may be
useful in other situations where two nonequilibrium degrees
of freedom interact in a biological system. For example, two
motor proteins which walk on a microtubule may affect each
other’s motion. As mentioned above, our work is a generali-
zation of the work of Peskinet al. to include an arbitrary
interaction potentialf17g. This generalization may be rel-
evant to the problem originally addressed in Ref.f17g—the
force production by a polymerizing filament. Introducing a
potentialswhich describes the interaction between the grow-
ing filament tip and the obstacle against which the polymer
pushesd affects the polymerization speed and the force-
velocity relation of the filament.
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APPENDIX A: ESTIMATING THE NA OPENING RATE

Here we estimate the DNA opening ratea from experi-
ments on short hairpins. Bonnetet al. measured a ratek
<3000 s−1 for the cooperative opening of a 5-bp hairpin
loop at room temperatures300 Kd f23g. We assume that
spontaneous opening of a short hairpin occurs like a zipper
from one of the ends and neglect the opening by a fluctuation
in the center of the DNA. This assumption is valid for tem-
peratures well below the DNA melting temperature. Suppose
that the 5-bp hairpin loop has probabilityPi to be in statei
=0,1, . . . ,5,where i denotes the number of opened base
pairs. Transitions between the states satisfy

dPi

dt
= 5− aP0 + bP1, i = 0,

− sa + bdPi + aPi−1 + bPi+1, i = 1,2,3

− sa + bdP4 + aP3, i = 4.
6 sA1d

Closing is impossible in the 0 state, which determines the
first line of Eq. sA1d. We assume that full opening is irre-
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versible: the open hairpinsstate 5d cannot close again. This
assumption is consistent with the experimental observation
that the closing rate of a hairpin is orders-of-magnitude
slower than its opening ratef23g.

After a relaxation time, the Markov process fori
=0, . . . ,4 reaches a nonequilibrium steady state with
dPi /dt=0 and currentJ=aP4. We use the steady-state con-
dition to solve for thePi in terms ofP4:

P3 = P4s1 + s−1d,

P2 = P4s1 + s−1 + s−2d,

P1 = P4s1 + s−1 + s−2 + s−3d,

P0 = P4s1 + s−1 + s−2 + s−3 + s−4d,

sA2d

wheres=a /b. The irreversible opening rate of the hairpin is
k=J/oi=0

4 Pi. Therefore,

k = a
s4

1 + 2s+ 3s2 + 4s3 + 5s4 . sA3d

Substitutingk=3000 s−1 ands=1/7 into Eq. sA3d gives the
estimatea.107 s−1. This estimate can be compared with
theoretical estimates of the base-pair opening ratea, which
range from 105 s−1 to 106 s−1 f24,25g. Although the sponta-
neous opening rate is rapid, the closing rateb is approxi-
mately 7 times larger—a long DNA molecule tends, on av-
erage, to close. Under these conditions, net DNA unwinding
requires energy input—for example, from a helicase.

APPENDIX B: TWO-STATE MODEL

In the bulk of this paper, we represent helicase motion
only by the ratesk+ andk− of forward and backward stepping
along the NA. Here we discuss a minimal model of helicase
motion which takes into account the nonequilibrium nature
of this process. Many helicases share features of motion gen-
eration with other ATP-consuming motor proteins; thus heli-
cases can be discussed in the same general framework. The
model we discuss here is a discrete version of a simple
model for motor proteins which hydrolyze ATP to move
along a polar trackf26–28g.

The helicase PcrA is believed to hydrolyze 1 ATP mol-
ecule per single-base step on ssDNAf6,18g. The hydrolysis
cycle involves several transitions: an ATP molecule first
binds the helicase. In the bound state, the ATP molecule is
hydrolyzed into one ADP molecule and an inorganic phos-
phatesPid. After the ADP and Pi are released from the heli-
case, the cycle is complete. Any of these biochemical steps
may be associated with a conformational change of the pro-
tein. Crystal structures of a PcrA/DNA complex have identi-
fied two different conformations, corresponding to the ATP-
bound and Pi-bound proteinf4g.

We assume that the protein interacts with the ssNA in two
different statesA andB, and biochemical transitions shift the
protein between the states.sMore distinct biochemical states

are possible and could be included in the description.d Be-
cause the two states have different conformations, the energy
of interaction between the helicase and NA is different in the
two states. We neglect NA sequence variation and assume
the interaction between the helicase and NA is the same if
shifted by one base. Therefore the interaction potential is
periodic.

Here we consider a discrete version of this two-state
model. Each interaction potential is described by two dis-
crete substates per potential period. One potential period cor-
responds to the helicase step size, and the substates are in-
dexed byj and j +1/2. Thepotential depth is denoted byE,
and we consider the possibility of an applied external force
F. We use units where one period of the potential has length
one and energies are measured in units ofkBT. The probabili-
ties of finding the helicase in a given substate at a given
position arePj

A, Pj+1/2
A , Pj

B, andPj+1/2
B sFig. 6d.

Two types of transitions between substates occur:sid tran-
sitions between statesA andB, which correspond to a change
in potential andsii d transitions between substatesj and j
+1/2, which correspond to the relaxationstoward a mini-
mum in free energyd that occurs within a chemical state. In
our parametrization, transitions betweenPj

A andPj+1/2
A occur

at forward rater and backward ratere−E+F/2 and betweenPj
B

andPj+1/2
B at forward ratese−E−F/2 and backward rates. The

potentials are assumed to be offset and identical, so the tran-
sitions betweenPj+1/2

B and Pj+1
B occur at forward rater and

backward ratere−E+F/2 and betweenPj+1/2
A and Pj+1

A at for-
ward ratese−E−F/2 and backward rates sFig. 6d.

Transitions fromPj
B to Pj

A occur at ratevem−2E and the
reverse transitions at ratev. The free-energy difference be-
tweenA and B at point j is 2E. The chemical potentialm
represents the free energy released from hydrolysis of one
ATP molecule; ifm=0, the transition is at equilibrium. The
two substates atj +1/2 areassumed to be at the same energy,
and transitions occur at ratev in both directions. For conve-

FIG. 6. Schematic of a two-state model for mechanochemical
energy transduction.sad Two-state model characterized by two pe-
riodic energy profiles.sbd Discrete version of the two-state model.
At each site, two statesA and B are distinguished. Substates are
indexed byj and j +1/2. Fordetails see text.
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nience we introduce the symbolse=e−E, f=e−F/2, and m
=em−2E. The probability currents are defined by

Jj
A = rPj

A − ref−1Pj+1/2
A ,

Jj
B = sefPj

B − sPj+1/2
B ,

Jj+1/2
A = sefPj+1/2

A − sPj+1
A ,

Jj+1/2
B = rPj+1/2

B − ref−1Pj+1
B . sB1d

The individual probabilities obey

dPj
A

dt
= − Jj

A + Jj−1/2
A − vPj

A + vmPj
B,

dPj
B

dt
= − Jj

B + Jj−1/2
B + vPj

A − vmPj
B,

dPj+1/2
A

dt
= − Jj+1/2

A + Jj
A − vPj+1/2

A + vPj+1/2
B ,

dPj+1/2
B

dt
= − Jj+1/2

B + Jj
B + vPj+1/2

A − vPj+1/2
B . sB2d

Steady-state properties

We consider the steady state where the rates of change of
the probabilities in Eq.sB2d vanish. The probabilitiesPA,
P1/2

A , PB, andP1/2
B are independent ofj and satisfy

3
− sr + s+ vd vm esrf−1 + sfd 0

v − fesrf−1 + sfd + vmg 0 sr + sd
sr + sd 0 − fesrf−1 + sfd + vg v

0 esrf−1 + sfd v − sr + s+ vd
43

PA

PB

P1/2
A

P1/2
B
4 = 0. sB3d

The null space of this matrix determines the steady-state probability vector, which we normalize so thatPA+PB+P1/2
A +P1/2

B

=1. The total steady-state current is

J = JA + JB = rPA + sefPB − ref−1P1/2
A − sP1/2

B . sB4d

For the special case of no applied forcesf=1d, the current is

Jf =1 =
vsr − sdsm− e2d

sr + sds1 + m+ 3e + me + 2e2d + vs1 + 3m+ 3e + med
,

=
ve−2Esr − sdsem − 1d

sr + sds1 + em−2E + 3e−E + em−3E + 2e−2Ed + vs1 + 3em−2E + 3e−E + em−3Ed
. sB5d

The sign of the current is given by the productsr −sdsem

−1d. The conditions for zero current are as expected: ifr
=s, then the potentials are symmetric. Thus the current must
be zero. Similarly, if the chemical potential from the fuel is
m=0, then detailed balance must be satisfied and there is no
motion. It is useful to give an approximate expression for the
current in the caseE@1 andm−2E@1. Then the terms pro-
portional toem−2E dominate in the denominator, and the cur-
rent is approximately

J f=1 <
vsr − sds1 − e−md

r + s+ 3v
. sB6d

Effective hopping rates

Summing over the probabilities of different states in a
given periodj we obtain an effective hopping model. In this

averaged model, the system has probabilityPj to be at sitej ;
effective forward and backward hopping ratesk+ andk− con-
nect adjacent sites. This effective system is described by the
equation

dPj

dt
= − sk+ + k−dPj + k+Pj−1 + k−Pj+1. sB7d

At steady state, we can reduce the full model in Eq.sB2d to
this effective description. Summing Eq.sB2d we find

d

dt
sPj

A + Pj
B + Pj+1/2

A + Pj+1/2
B d = Jj−1/2

A + Jj−1/2
B − Jj+1/2

A − Jj+1/2
B

= Jj−1/2 − Jj+1/2, sB8d

where we have defined the current
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Jj−1/2 = sefPj−1/2
A + rPj−1/2

B − sPj
A − ref−1Pj

B. sB9d

This formula can be rewritten in terms ofPj
A andPj−1

A :

Jj−1/2 = Fsef
Pj−1/2

A

Pj−1
A + r

Pj−1/2
B

Pj−1
A GPj−1

A − Fs+ ref−1Pj
B

Pj
AGPj

A.

sB10d

Thus we obtain

dPj

dt
= − Ss+ ref−1Pj

B

Pj
A + sef

Pj+1/2
A

Pj
A + r

Pj+1/2
B

Pj
A DPj

+ Ssef
Pj−1/2

A

Pj−1
A + r

Pj−1/2
B

Pj−1
A DPj−1

+ Ss+ ref−1Pj+1
B

Pj+1
A DPj+1. sB11d

At steady state, the probabilities are independent ofj , so we
can drop the subscripts. Thus we can read off the effective
hopping rates

k− = s+ ref−1PB

PA =
sPA + ref−1PB

PA ,

k+ = sef
P1/2

A

PA + r
P1/2

B

PA =
sefP1/2

A + rP1/2
B

PA . sB12d

We give full expressions for the hopping rates in the case of
zero forcesf=1d:

kf =1
+ =

e2fsr + sd2 + svg + efr2 + s2m+ smsr + vd + rsv + sdg + rvm

sr + sds1 + m+ 3e + me + 2e2d + vs1 + 3m+ 3e + med
,

kf =1
− =

e2fsr + sd2 + rvg + efr2 + s2m+ smsr + vd + rsv + sdg + svm

sr + sds1 + m+ 3e + me + 2e2d + vs1 + 3m+ 3e + med
. sB13d

Note that, as expected, subtracting these rates we recover the
expression for the current in Eq.sB5d: Jf =1=kf =1

+ −kf =1
− .

Ratio of hopping rates with applied force

An important quantity is the ratio of forward and back-
ward hopping rates

k+

k− =
sPA + ref−1PB

sefP1/2
A + rP1/2

B ,

=
em−Esr + sdrvf2 + em−2Esr + sdssr + s+ vdf2 + Os1d

em−Esr + sdsvf2 + em−2Essr + s+ vdsrf + sf3d + Os1d
,

sB14d

which becomes a detailed balance relation ifm=0. Note in
particular that ifF=0 andm=0, this ratio is 1, as expected,
since in the absence of a chemical potential and applied force
the helicase must undergo an unbiased random walk.

We wish to take the opposite limit: the chemical potential
of ATP hydrolysis is approximately 20kBT. Thus we assume

m@1 so that terms not proportional toem are negligible. For
the remainder of this appendix, all expressions are approxi-
mations valid for largem. In this limit, the ratio becomes

k+

k− <
r + e−E s

v
sr + s+ vd

s+ e−E s

v

r + s+ v

r + s
sreF/2 + se−F/2d

. sB15d

For large positiveF sa force opposing the helicase motiond,
the second term in the denominator dominates and we have

k+

k− < Sr + e−E s

v
sr + s+ vdD vsr + sdeE

rssr + s+ vd
e−F/2,

=
k0

+

k0
−e−F/2. sB16d

In this limit, the applied force modifies the ratio of forward-
backward helicase hopping rates with an exponential,
detailed-balance-like relation. A linear interaction potential
will have the same effect on the ratio ofk+ to k−.
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